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Abstract

A tropical channel version of the Weather Research and Forecasting (WRF) model is
used to investigate the radiative impacts of upper tropospheric clouds on water vapor
in the tropical tropopause layer (TTL). The WRF simulations of cloud radiative effects
and water vapor in the upper troposphere and lower stratosphere show reasonable
agreement with observations, including approximate reproduction of the water vapor
“tape recorder” signal. By turning on and off the upper tropospheric cloud radiative
effect (UTCRE) above 200 hPa, we find that the UTCRE induces a warming of 0.76 K
and a moistening of 9% in the upper troposphere at 215 hPa. However, the UTCRE
cools and dehydrates the TTL, with a cooling of 0.82 K and a dehydration of 16 % at
100hPa. The enhanced vertical ascent due to the UTCRE contributes substantially
to mass transport and the dehydration in the TTL. The hydration due to the enhanced
vertical transport is counteracted by the dehydration from adiabatic cooling associated
with the enhanced vertical motion. The UTCRE also substantially changes the hori-
zontal winds in the TTL, resulting in shifts of the strongest dehydration away from the
lowest temperature anomalies in the TTL. The UTCRE increases in-situ cloud forma-
tion in the TTL. A seasonal variation is shown in the simulated UTCRE, with stronger
impact in the moist phase from June to November than in the dry phase from December
to May.

1 Introduction

Water vapor in the stratosphere plays an important role in the stratospheric radiative
budget and chemistry (e.g. Fueglistaler et al., 2009, and references therein). It is widely
accepted that the entry of water vapor into the stratosphere is primarily regulated by
the interaction of mass transport and dehydration in the tropics. However, considerable
debates exist concerning further details of this entry from the tropical tropopause layer
(TTL), the transition layer from the troposphere to the stratosphere.

4656

Jadedq uoissnosiq | Jadeq uoissnosiq |  Jadeq uoissnosig | Jaded uoissnosig

ACPD
12, 4655-4678, 2012

Hydration or
dehydration

L. Wu et al.

: “““ I““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/4655/2012/acpd-12-4655-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/4655/2012/acpd-12-4655-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

It is suggested that air is transported to the stratosphere by large-scale slow vertical
motions associated with clear-sky radiative heating (e.g. Brewer, 1949). Nonetheless,
the mass flux associated with the clear sky radiative heating is too slow to support
observational rate of troposphere-to-stratosphere transport (TST; e.g. Sherwood and
Dessler, 2003). An alternative hypothesis is that the tropical TST is primarily con-
tributed by deep convective overshooting (e.g., Sherwood and Dessler, 2000). Re-
cently, the radiative effect of cirrus clouds is proposed to be a likely mechanism to
accelerate the mass transport from the troposphere to the stratosphere (Corti et al.,
2005, 2006; Huang and Su, 2008; Tzella and Legras, 2011).

Another debate exists because the entry of stratospheric water vapor is drier than
the expected water vapor saturation mixing ratio with respect to zonal-mean tempera-
ture in the TTL (Newell and Gould-Stewart, 1981). Holton and Gettelman (2001) sug-
gested that the rapid horizontal advection dehydrates slowly ascending air by repeatly
exposing them to the lowest temperature in the TTL. Sherwood and Dessler (2000)
postulated that dehydration might be primarily due to deep convective overshooting.
However, experiments showed that overshooting convection hydrates rather than dehy-
drates the tropical lower stratosphere (e.g. Corti et al., 2008). Based on synoptic-scale
temperature and wind fields from reanalysis data, trajectory calculations can explain
much of the stratospheric water vapor well (Fueglistaler et al., 2005; Schoeberl and
Dessler, 2011). Due to the strong temperature dependence of water vapor pressure,
dehydration and transport are intrinsically coupled.

Previous studies have demonstrated that upper tropospheric cloud has significant ra-
diative impacts on TTL temperature or mass transport. A single-layer thin cirrus in the
TTL warms local atmosphere by absorbing longwave radiation from surface but emit-
ting at a lower temperature, and thus enhances vertical ascent. For multi-layer cirrus
clouds, the cloud radiative effect (CRE) is dependent on the contrast of radiative fluxes
between the cirrus in the TTL and underlying clouds (e.g. Hartmann et al., 2001). TTL
cirrus overlapping thick clouds could radiatively cool the TTL and result in a weakening
of vertical ascent. The opaque clouds (7 > 3) can warm the TTL by absorbing solar
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radiation (Yang et al., 2010). Observational data show an overall warming of the TTL
by the CRE (e.g. Su et al., 2009; Yang et al., 2010). With a two-dimension (2-D) model,
Rosenfield et al. (1998) showed that the radiative heating of subvisible thin cirrus would
result in a warming of 1—2 K and a vertical velocity increase of 0.02-0.04 mm s 'inthe
TTL. The lower stratosphere is hydrated by as much as 1 ppmv due to the warmer
tropopause. However, other studies showed that cirrus radiative effects are compli-
cated. On one hand, cirrus radiative heating drives the cloud lofting. The cirrus can
persist for days and the TTL is dehydrated by the freeze-drying process associated
with the uplift of the cloud layer (Jensen et al., 1996; Jensen and Pfister, 2004). On
the other hand, the cirrus radiative effects can dissipate clouds in several hours if the
energy is only used to warm the atmosphere (Jensen et al., 1996). Dinh et al. (2010)
suggested that radiative heating of subvisible cirrus has a potential to dehydrate the
TTL by conversion of water vapor into ice through convergence of dry air, without in-
volving adiabatic cooling associated with external large-scale uplift. Also, cirrus can be
maintained by the circulation thermally forced by the cloud radiative heating.

Since most of the previous modeling studies were based on idealized 2-D framework,
a realistic representation of 3-D structure of the TTL is needed to better understand and
quantify the radiative impacts of clouds on the TTL water vapor. Driven by reanalysis
data, a 3-D tropical channel model is used in this study to investigate the radiative
impacts of upper tropospheric (above 200 hPa) clouds on the TTL water vapor. The
model configuration is described in Sect. 2. In Sect. 3, the performance of the tropical
channel model in representing CRE and water vapor in the TTL is presented in com-
parison with satellite observations. Section 4 presents the upper tropospheric cloud
radiative effects (UTCRE) on the TTL in the model. The physical processes related to
the TTL hydration/dehydration by the UTCRE are discussed in Sect. 5. The conclusion
is given in Sect. 6.
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2 Model configuration

As a state-of-the-art atmospheric simulation system, the Weather Research and Fore-
casting (WRF) model is suitable for a broad range of applications across scales ranging
from meters to thousands of kilometers. The Advanced Research WRF (ARW) model
(Skamarock et al., 2008) Version 3.3 is used in this study. Different from the common
practice that uses WRF with a regional domain, we configure our model simulation in
a “tropical channel” version for this study. As the horizontal transport of water vapor
is quite important to understand the dehydration in the upper troposphere and lower
stratosphere (UTLS), the “tropical channel” configuration allows for a realistic depic-
tion of tropical circulation in the UTLS. The control simulation (referred to as CTRL)
is configured as a “tropical channel” with 50 km horizontal resolution, covering 15° S
to 45° N and 180° W to 180° E. The meridional asymmetry is due to a systematic high
bias in the Southern Hemispheric (south to 15° S) water vapor simulation in the TTL,
which appears to be related to poor representation of the stratospheric circulation in
this version of WRF. Periodic boundary condition is used in the east-west direction.
The initialization fields and boundary conditions (north-south and lower boundaries)
are obtained from the T255 (~79 km) horizontal resolution of ERA-Interim reanalysis
data (http://dss.ucar.edu/datasets/ds627.0/), with an update at every 5 days. To mini-
mize the impact of lateral boundary conditions, the simulated results within 10° S—40° N
are analyzed with a focus on the inner tropics (10° S—10° N). The model simulation is
conducted from 1 September 2004 to 30 November 2008. Analyses are focused on the
last four years (1 December 2004 to 30 November 2008) to avoid the impact of initial
conditions. With a terrain-following hydrostatic-pressure coordinate, the model top is
set at 10hPa. The model has 49 eta levels in the vertical, including 7-8 levels in the
TTL with the vertical resolution of ~0.6 km. Based on the observed large-scale dynam-
ical structures, Fueglistaler et al. (2009) defined the TTL as a layer between 150 hPa
(~14km) and 70hPa (~18.5km). In this study, we follow their definition of the TTL,
focusing on the 5 pressure levels (147 hPa, 121 hPa, 100 hPa, 83 hPa and 68 hPa) in
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the TTL, which are the standard pressure levels for the Aura Microwave Limb Sounder
(MLS) data products. Model simulations are interpolated to the MLS standard pressure
levels.

The principal physical schemes used in the simulation include the Lin et al. micro-
physics scheme (Chen and Sun, 2002), the Grell 3-D ensemble cumulus scheme (Grell
and Devenyi, 2002), the Rapid Radiative Transfer Model for Global climate models
(RRTMG) longwave scheme (Mlawer et al., 1997; lacono et al., 2000) and the God-
dard (Chou and Suarez, 1994) shortwave scheme. In order to investigate the UTCRE,
a sensitivity run (referred as to UTNR) is conducted by turning off CRE (both longwave
and shortwave) above 200 hPa, with no modifications of cloud contents and other pa-
rameters. Thus, the differences between the CTRL and UTNR simulations represent
the UTCRE.

3 Model performance

The MLS Level 2 water vapor product V3.3 (Livesey et al., 2011) is used in this study
to evaluate the WRF simulated water vapor in the TTL. Launched in July of 2004,
the MLS instrument on board the Aura satellite provides global measurement of upper
tropospheric and stratospheric water vapor (Waters et al., 2006). The MLS water vapor
data in the TTL have a vertical resolution of ~3 km and horizontal resolutions of ~7 km
across-track and ~200 km along-track. The measurement uncertainties of water vapor
in the TTL are about 4 % to 15 % (Read et al., 2007).

As the water vapor “tape recorder” (the imprint of tropical temperature on water vapor
entering the stratosphere; Mote et al., 1996) clearly marks the seasonal cycle in tropical
tropopause temperature coupled with vertical ascent, we first examine the simulated
water vapor “tape recorder” in the WRF model. As shown in Fig. 1a, the MLS observed
water vapor “tape recorder” shows dry anomalies in the first half of a year (from De-
cember to May, hereafter referred to as dry phase), and moist anomalies in the second
half of a year (from June to November, hereafter referred to as moist phase). Water
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vapor is transported from 121 hPa through the stratosphere while the water vapor sig-
nals imprinted at the bottom of the stratosphere are maintained for several months.
The WRF CTRL simulation (Fig. 1b) captures seasonal variations of water vapor in
the TTL, albeit with a smaller magnitude of the anomalies compared to the MLS data.
However, the simulated water vapor “tape recorder” travels upward faster than the MLS
observations, especially in the stratosphere. The simulated mean all-sky vertical veloc-
ity in the inner tropics is 0.67 mm s~' at 100 hPa, somewhat larger than the observed
mean vertical velocity about 0.4 mm s (Mote et al., 1998).

The MLS water vapor spatial distribution at 100 hPa (Fig. 2a) shows a minimum
over the tropical Western Pacific in December-January-February (DJF). In June-July-
August (JJA), the tropical Western Pacific and Indian Ocean are relatively dry while
two moist regions are shown at mid-latitude over Asia and Central America (Fig. 2b).
The WRF CTRL simulation in DJF (Fig. 2c) captures the location of 100 hPa water
vapor minimum in the Western Pacific. However, the model simulation is drier than
the MLS data over the relatively dry regions while it is moister over the relatively moist
regions. The relative distributions of dry and moist regions in JJA are also captured
in the model simulation (Fig. 2d). However, the dry regions over the tropical Western
Pacific and Indian Ocean shift westward while the moist regions at mid-latitude shift
eastward, comparing to the MLS observations. Similar to in DJF, the simulated water
vapor over relatively dry regions is drier than MLS, but moister over relatively moist
regions in JJA. Averaged over the inner tropics, the MLS (WRF CTRL) water vapor at
100 hPa is 3.29 (3.26) ppmv in DJF and 4.68 (3.88) ppmv in JJA.

The Clouds and Earth’s Radiant Energy System (CERES) Synoptic (SYN) product
provides observed TOA (top of atmosphere) fluxes at 1° spatial and 3 hourly temporal
resolution. The difference of TOA fluxes between all-sky condition and clear-sky con-
dition is referred as the cloud radiative forcing. As the clear-sky shortwave flux data
contain a lot of missing values, we use only TOA longwave fluxes from the CERES
Aqua SYN1deg-lite_Ed2.6 monthly product (http://ceres.larc.nasa.gov) and the derived
longwave cloud forcing (LWCF).
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Figure 3 compares the LWCF from the CERES data with the WRF CTRL simulations
in DJF and JJA. The WRF simulations reproduce the LWCF distribution and seasonal
variations observed by CERES. In DJF, the magnitude of the simulated LWCF (Fig. 3c)
is generally smaller than the magnitude of the CERES observations (Fig. 3a). In JJA,
the simulated LWCF (Fig. 3d) is smaller over land but larger over ocean, comparing
to the CERES data (Fig. 3b). Averaged in the inner tropics, the CERES (WRF CTRL)
LWCF is 38.67 (26.69) Wm ™2 in DJF and 35.85 (32.42) Wm™2 in JJA.

Overall, the WRF model reasonably reproduces the relative distribution and seasonal
variations of CRE and water vapor in the TTL, although the magnitude and location of
simulated CRE and water vapor show discrepancies from observations.

4 Radiative effects of upper tropospheric clouds

Figure 4a shows the 4yr averaged longwave (LW), shortwave (SW) and net (NET)
radiative heating rates for in the inner tropics (10° S—10° N). For both the WRF CTRL
and UTNR simulations, SW radiation warms in the UTLS while LW radiation warms
the TTL but cools the upper troposphere (UT) from 215hPa to 147 hPa and lower
stratosphere above 68 hPa. In total, there is a radiative heating in the TTL and lower
stratosphere, but a radiative cooling in the UT. The UTCRE increases radiative heating
rate in the UT by both SW and LW radiation (Fig. 4b). In the lower TTL between 147 hPa
and 83 hPa, the UTCRE increases radiative heating rate by enhanced LW warming,
but decreases radiative heating rate by reduced SW absorption. Above 83 hPa, the
UTCRE corresponds to increased LW cooling and little changes in SW fluxes.

Figure 5 shows the height-time cross section of the UTCRE induced differences av-
eraged over the inner tropics. The UTCRE warms and moistens the UT, but cools and
dehydrates the TTL at most of the time (Fig. 5a and b). Seasonal variations of the
UTCRE induced changes are seen in the TTL water vapor, with intense dehydration
in the moist phase and moderate dehydration in the dry phase. The cooling and de-
hydration in the dry phase also tends to extend higher in the vertical than in the moist

4662

Jadedq uoissnosiq | Jadeq uoissnosiq |  Jadeq uoissnosig | Jaded uoissnosig

ACPD
12, 4655-4678, 2012

Hydration or
dehydration

L. Wu et al.

: “““ I““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/4655/2012/acpd-12-4655-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/4655/2012/acpd-12-4655-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

phase. Due to the strong temperature dependence of the water vapor pressure, the
tropical-averaged moisture changes (Fig. 5a) follow the temperature changes (Fig. 5b)
in the sign, but their magnitudes are not exactly in phase. For example, the maximum
cooling occurs in the dry phase, not in the moist phase. Such shift in phase relation of
tropical-averaged water vapor and temperature are results of inhomogenous response
to the UTCRE as discussed in Sect. 5. On the 4 yr average at 215 hPa, there is a warm-
ing of 0.76 K (maximum up to 1.28 K) and a moistening of 9 % (maximum up to 23 %
relative to the CTRL run). The warming and moistening gradually weaken with height
in the UT. A transition layer from warming and hydration to cooling and dehydration
is shown around 147 hPa. Maximum mean cooling and dehydration occur at 100 hPa
with an average cooling of 0.82 K (maximum cooling up to 1.97 K in the dry phase) and
a dehydration of 16 % (maximum dehydration up to 40 % in the moist phase). Above
100 hPa, the cooling and dehydration gradually weaken with height.

The UTCRE increases the vertical ascent between 215 hPa and 121 hPa, with max-
imum increase of vertical velocity at 215 hPa and intense (moderate) enhancement in
the moist (dry) phase (Fig. 5¢c). On the 4yr average, the increase of vertical veloc-
ity (83.18 mm s'1) by the UTCRE is about 49 % of mean vertical velocity at 215hPa in
the CTRL simulation (6.50 mm s‘1). On the domain averages between 100 hPa and
83 hPa, the UTCRE increases vertical velocities in DJF, but decreases them in JJA
(Figs. 5¢c and 6). The domain-averaged change of vertical velocity tends to extend
higher in the dry phase, corresponding to the higher cooling and dehydration in the dry
phase in the TTL. The UTCRE results in slight subsidence above 83 hPa. For ice water
content (IWC), the UTCRE mainly increases clouds in the UT and lower TTL (Fig. 5d),
especially in the moist phase, while it decreases clouds at some of the time around
DJF.
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5 Discussion

The thermodynamic energy balance in the TTL can be approximately represented by:

oT

T +wS=Q (1)
where T is temperature; w is vertical velocity; S is static stability; Q is diabatic heating
rate (Holton et al., 1995). Based on the thermodynamic energy equation, the net dia-
batic heating is balanced by the adiabatic ascent and the temperature tendency. Con-
sidering the 4 yr-averaged tropical changes in our simulations, the increased radiative
heating rate by the UTCRE (Fig. 4b) induces warming and ascent in the UT (Fig. 5b and
c). The warming increases the threshold for ice formation in the UT while the enhanced
upwelling transports more moisture from below. As a result, moisture increases in the
UT (Fig. 5a). Clouds also increase (Fig. 5d), probably related to enhanced vertical
transport of ice particles and stronger convective updraft. From 147 hPa to 121 hPa,
relatively smaller radiative heating than the UT (Fig. 4b) associated with larger static
stability causes weaker increase of ascent. The enhanced adiabatic cooling leads to
temperature decrease in this layer of long radiative relaxation time scale. Moisture
decreases in response to decreased temperature. Cloud increases (Fig. 5d) are con-
tributed by both vertical transport and freeze-drying processes. Above 83 hPa, the de-
creased radiative heating rate by the UTCRE (Fig. 4b) is balanced by slight decrease
of vertical motion, which leads to cooling and continued dehydration (Fig. 5).

Detailed examination of variations indicates that there are large temporal and spa-
tial departures from the simple explanation between 100 hPa and 83 hPa. Considering
the seasonal variations, as shown by the time series of the UTCRE induced monthly
averaged differences at 100 hPa (Fig. 6), the change of IWC agrees well with the tem-
perature change. The UTCRE induced cooling increases cloud formation in the TTL.
However, the magnitude of water vapor change is not exactly in phase with the magni-
tude of temperature change. The large discrepancies between the magnitude of tem-
perature and water vapor changes are largely corresponding to the UTCRE induced
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changes of vertical water vapor transport (—6(6"";’); purple line in Fig. 6). The dehydra-

tion from the freeze-drying process is counteracted by the UTCRE enhanced vertical
transport at 100 hPa, which results in the phase shift between temperature and wa-
ter vapor changes. However, the domain-averaged difference in vertical velocity at
100 hPa between the CTRL and UTNR runs changes sign from DJF to JJA, which
does not explain the persistently enhanced vertical transport of water vapor throughout
the 4 yr. This points to the need to examine spatial variations as shown in Fig. 7.

The seasonal maps of the UTCRE induced differences at 100 hPa are displayed in
Fig. 7. In both DJF and JJA, the UTCRE mainly enhances ascent (Fig. 7a and b) in
cloudy regions (see Fig. 3c and d). The UTCRE induces subsidence to the west of
cloudy regions (Fig. 7a and b) due to wave response (Gill, 1980; Rodwell and Hoskins,
1996). In JJA, more intense downward motion is shown in the inner tropics than in
DJF (Fig. 7b), which results in the domain-averaged reduction of vertical ascent at
100hPa in JJA (Fig. 6). Adiabatic cooling (warming) is associated with the UTCRE
induced ascent (descent), with maximum cooling (warming) shifted to the west of the
maximum ascent (descent) due to horizontal advection. Except over the Indian Ocean,
dehydration by the UTCRE corresponds to cooling in most regions, with maximum
dehydration shown at the Western Pacific around 20° N (Fig. 7c and d). Over the Indian
Ocean, the UTCRE induces strong westerly anomalies (weakening of easterly) in DJF
and strong easterly anomalies in JJA. The strong wind anomalies carry dehydrated air
downstream away from the origin that dehydration takes place, resulting in offsets of the
locations of the driest and coldest anomalies. Thus, less dehydration (hydration around
the descent in DJF) is shown over the Indian Ocean in both DJF and JJA although
cold anomalies over the Indian Ocean are stronger than over Western Pacific (Fig. 7a
and b). Similarly, the increase of clouds is shifted away from the strongest negative
temperature anomalies due to horizontal advection by anomalous winds (Fig. 7e and
f). Less cloud increase occurs over the Indian Ocean comparing to Western Pacific.

Hence, the argument is still valid at 100 hPa, where the enhanced updrafts in cloudy
regions induce adiabatic cooling and dehydration in both DJF and JJA. However, strong
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descent anomaly to the west of ascent are induced by the UTCRE at 100 hPa (Fig. 7b),
which leads to decrease of vertical velocity in JJA in the domain-averages (Figs. 5c
and 6). The dehydration by adiabatic cooling is counteracted by the enhanced vertical
transport of water vapor at 100 hPa, which results in that the magnitude of water va-
por changes is not following the magnitude of temperature changes (Fig. 6). Due to
significant changes of horizontal winds (mainly around Indian Ocean) induced by the
UTCRE, the maximum UTCRE induced cooling is not collocated with the maximum
dehydration.

6 Conclusions

In this study, we implement the “tropical channel” configuration of the WRF model to in-
vestigate the radiative impacts of upper tropospheric clouds (all clouds above 200 hPa)
on the TTL water vapor. The 4yr WRF simulations show reasonable agreements with
observations on CRE and water vapor in the TTL, including approximate reproduction
of the water vapor “tape recorder” in the TTL.

Sensitivity experiment demonstrates that the UTCRE increases temperature and ver-
tical motion in the UT from 215hPa to 147 hPa. On the 4 yr average at 215hPa, the
UTCRE contributes to a warming of 0.76 K and enhanced updraft by 49 % in the WRF
CTRL run. The significant warming and enhanced vertical transport lead to increase of
both water vapor (increase by 9 % at 215hPa) and clouds in the UT. In the lower TTL
from 147 hPa to 83 hPa, increase of upwelling by the UTCRE contributes to enhanced
vertical transport of water vapor. However, the enhanced vertical motion is associated
with increased adiabatic cooling, which dehydrates the lower TTL by forming more ice
clouds. The dehydration by adiabatic cooling offsets the hydration by the enhanced
vertical transport and results in a net dehydration in the lower TTL. On the 4yr av-
erage, the simulated UTCRE leads to a maximum cooling of 0.82 K and a maximum
dehydration of 16 % at 100 hPa. The cloud radiative cooling induces reduction of the
ascent rate, temperature decrease and dehydration above 83 hPa.
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On the 4 yr averaged vertical profiles in the inner tropics, the change of water vapor
shows strong dependence on the temperature change. However, the magnitude of
water vapor changes is not in phase with the magnitude of temperature changes due
to the competing effect of enhanced vertical transport of water vapor by the UTCRE.
Moreover, the maps at 100 hPa show that the maximum dehydration is not collocated
with the maximum cooling. The UTCRE induced temperature change has substantial
horizontal and vertical variations over the tropics. At 100 hPa, the UTCRE generally
induces ascent in cloudy regions and descent to the west of ascent. The UTCRE
induced anomalous horizontal advection over Indian Ocean transports water vapor
anomalies away from the lowest temperature anomalies. Due to horizontal advection,
the maximum cooling is also located west of the maximum ascent anomaly in the
tropics.

This study confirms that the radiative impacts of upper tropospheric clouds contribute
substantially to tropical TST (Corti et al., 2005, 2006). Moreover, the UTCRE has sig-
nificant impact on the dehydration in the TTL. The UTCRE also helps cloud formation in
the TTL. Thus, an accurate representation of the UTCRE is needed in order to have a
realistic water vapor and energy budget in the UTLS. Recent studies indicate aerosols
may interact with UT clouds to affect TTL water vapor through radiative and microphys-
ical processes (Su et al., 2011; Wu et al., 2011), further pointing to the importance of
continued study of UTCRE on TTL mass transport.

Our analysis also shows that horizontal transport is quite important to dehydration
in the TTL. It is insufficient to investigate dehydration simply based on temperature
without consideration of the large-scale circulation. As pointed out by previous studies
(Fueglistaler et al., 2005; Tzella and Legras, 2011), a representation of large-scale
circulation is necessary to well quantify the dehydration processes in the TTL.

Some caveats in this study should be noted. First, the simulated water vapor
“tape recorder” travels upward faster than the MLS observations, especially in the
stratosphere. The stratospheric Brewer-Dobson circulation is one of the most impor-
tant factors contributed to the “tape recorder” signal and transport in the stratosphere
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(Fueglistaler et al., 2009, and references therein). The simulated fast transport in the
stratosphere might be due to the model top setting at 10 hPa, which cannot fully resolve
the Brewer-Dobson circulation. Secondly, in the inner tropics, the CERES data have
larger cloud forcing in DJF than in JJA. Although the model simulation captures the
distribution of TOA LWCF as in CERES, it produces larger cloud forcing in JJA than in
DJF. Due care should be used when interpreting the seasonal variation and magnitude
of the UTCRE.
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Fig. 1. Height-time cross section of inner tropical (10° S—10° N) mean water vapor anomalies
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(b) 4 yr-averaged differences of cloud radiative heating rates (Kday'1) in the inner tropics for
LW (blue), SW (green) and NET (red).
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ferences between the WRF CTRL and UTNR simulations for (a) water vapor difference (%)
relative to the WRF CTRL run; (b) temperature difference (K); (¢) vertical velocity difference
(mm 3‘1); (d) IWC difference (mg m‘3). (right panel) Vertical profiles of 4 yr mean differences

in left panel.
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Fig. 6. The time series of monthly averaged differences at 100 hPa. Temperature difference (K)
in red; water vapor (ppmv) difference in blue; vertical velocity (mm s‘1) difference in green; ice
water content (10'3 mg m'3) in cyan; vertical water vapor flux (- =5=; 107° ppmv s'1) in purple.
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Fig. 7. (a) The differences of vertical velocity (shade; mm s_1) and temperature (contour with
dashed lines for negative values and solid lines for positive values; K) between the WRF CTRL
and UTNR runs at 100 hPa in DJF; (b) same as (a) but in JJA. (¢) The differences of water
vapor (shade; ppmv) and horizontal wind (vector; ms‘1) between the WRF CTRL and UTNR
runs at 100 hPa in DJF; (d) same as (c) but in JJA. (e) The horizontal wind (vector; ms‘1) in
the WRF CTRL run and the difference of cloud ice (shade; mg m‘s) between the WRF CTRL
and UTNR runs at 100 hPa in DJF; (f) same as (e) but in JJA.
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